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ABSTRACT

We derive analytic expressions, using the impulse and epicycle approximations, which describe the kine-
matic response of a disk galaxy following a collision with a second spherical galaxy which collides perpendicu-
lar to, but not through the center of, the disk. This model can reproduce the morphologies found in n-body
experiments in which distant encounters produce two-armed spiral patterns and more central collisions
produce rings in the disk galaxy, thereby confirming that simple kinematics can be used to describe the early
evolution of these systems. Application of this procedure provides a convenient method with which to conduct
parameter studies of these collisions.

Comparison of the kinematic description with a fully self-gravitating, three-dimensional n-body/gasdynamics
computer model shows that the disk galaxy’s response is initially well represented by the kinematic model but
that the self-gravity of the disk becomes important at longer times after the collision. The flows of gas and
stars decouple from one another where stellar orbits cross, leaving regions of elevated gas density behind as
the stars move freely past each other. If star formation rates are enhanced in these regions of high gas density,
active star formation could be taking place where there is no corresponding dense feature in the old stellar

population.

Subject headings: galaxies: interactions — galaxies: kinematics and dynamics

1. INTRODUCTION

Lynds & Toomre (1976) and Toomre (1978) showed that
transient global rings could be induced in a disk galaxy if it is
hit perpendicularly to the disk by a smaller spherical galaxy.
Observations of ring galaxies which likely formed in this
manner show that many appear to have had recent episodes of
vigorous star formation in the ring, as evidenced by high levels
of far-infrared emission (Appleton & Struck-Marcell 1987a),
blue spectral colors (e.g., Schultz et al. 1990; Thompson &
Theys 1978), strong Ha spectral lines (Fosbury & Hawarden
1977), and near-infrared and optical colors (Marcum, Apple-
ton, & Higdon 1992). Example systems include VII Zw 466
(Thompson & Theys 1978), Arp 147 (Schultz et al. 1990, 1991),
and the Cartwheel galaxy (Marcum et al. 1992; Struck-Marcell
& Higdon 1993; Higdon 1993). The basic picture that a nearly
axisymmetric collision produces an outward propagating ring
of high density and high star formation rate has been worked
out by a number of investigators (Theys & Spiegel 1976, 1977,
Chatterjee 1984; Appleton & Struck-Marcell 1987b; Struck-
Marcell & Appleton 1987; Huang & Stewart 1988; Struck-
Marcell & Lotan 1990; Gerber, Lamb, & Balsara 1992;
Hernquist & Weil 1993; Gerber 1993).

If the collision is not axisymmetric, off-center rings, arcs, and
spiral patterns can be formed (Toomre & Toomre 1972;
Toomre 1978; Struck-Marcell 1990; Chatterjee 1986; Huang
& Stewart 1988; Gerber, et al. 1992). In order to understand
the mechanism by which off-center collisions produce dis-
turbed morphologies in galactic disks, a simplified analytic
model can provide insight. Further, an analytic model can be
simply and economically used to explore parameter space and
guide the choice of computationally expensive three-
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dimensional gravitational and hydrodynamical computation
models of observed systems. In this paper we show that the
disk morphologies produced by Toomre’s (1978) n-body
experiments on ring galaxies (see also Byrd & Howard 1992)
can be understood in terms of an impulsive encounter with a
second galaxy which produces epicyclic oscillations in the disk
galaxy (see § 2; Binney & Tremaine 1987; Struck-Marcell &
Lotan 1990). Some of the results obtained here are similar to
those obtained by Struck-Marcell (1990) in a study of caustic
development in slightly off center collisions. Donner, Engs-
trom, & Sundelius (1991) have pursued a similar study in the
context of the generation of spiral arm patterns. The motiva-
tion for the present study is to gain insight into the mechanism
whereby high gas density regions are produced in numerical
n-body/gasdynamics simulations of ring galaxies (Gerber et al.
1992; Gerber 1993; Gerber, Lamb, & Balsara 1994a; Struck-
Marcell & Higdon 1993; Hernquist & Weil 1993). Unlike
Struck-Marcell (1990), we explicitly include an arbitrarily large
impact parameter and do not restrict the magnitude of the
azimuthal velocity impulse in comparison to the radial velocity
impulse.

We derive analytic expressions to describe the kinematic
evolution of a stellar disk perturbed by the collision of a second
galaxy, which moves on a trajectory perpendicular to the disk
but does not pass through its center. The intruding galaxy is
taken to be spherical, and the disk stars move in a rigid poten-
tial that produces a constant circular rotation velocity. We
show that the resulting morphologies depend on three quan-
tities; a “strength ” parameter (see § 2), the impact parameter,
and the central concentration of the spherical galaxy.

The purely kinematic model cannot yield information about
the role of self-gravity and gasdynamical processes, which are
likely important for determining the sites of elevated star for-
mation rates. To learn more about these processes we compare
the behavior predicted by our analytic expressions with com-
putational results from a fully self-gravitating three-
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dimensional n-body/gasdynamics code (Balsara 1990; Gerber
et al. 1994a). The code employs a combination of n-body
particle-mesh (PM) and smoothed particle hydrodynamics
(SPH) techniques. The initial behavior of the galaxies is similar
to that predicted by our analytic model, but at later times in
the evolution of the disk, self-gravity becomes important in
amplifying density enhancements (see also Donner et al. 1991).
Gas piles up where orbits cross since, unlike the stars, gas
cannot freely move through regions where orbits intersect.
These regions of high gas density are likely to be the locations
of active star formation.

Our analytic model for the velocity impulse is described in
§ 2. The kinematic response predicted by the model is present-
ed in § 3. In § 4, a detailed study of one collision is used to
demonstrate the technique developed and to explore the com-
parison between the analytic and numerical results. A
summary is given in § 5.

2. ANALYTIC MODEL

Under the simplifying assumptions described in the follow-
ing sections, we derive the two-dimensional equations of
motion for disk stars following a collision with a spherically
symmetric galaxy. This intruder hits the disk at normal inci-
dence at an arbitrary distance from the center. Using these
equations of motion, which are shown to be functions of a
star’s initial position and three dimensionless parameters
which are defined below, we can determine the kinematic mor-
phology of the disk at any arbitrary time after the collision.

2.1. Solution for Velocity Impulses

We first solve for the velocity impulse delivered by the
intruder as it passes through the disk galaxy at constant veloc-
ity. The impulse approximation is expected to be valid as long
as the intruder moves fast enough that the disk stars do not
have time to move appreciably in their orbits during the inter-
action, but as mentioned in Binney & Tremaine (1987), this
method can often be applied beyond its formal limits.

The geometry we assume is illustrated in Figure 1. The disk
lies in the x-y plane. The intruder proceeds in a straight line in
the x-z plane (the plane of the paper) parallel to the z axis at
constant velocity V and penetrates the disk at a distance x = b
from the center of the disk. The vector r denotes position with
respect to the center of the intruder, while the vector R, as well
as the coordinates (x, y, z), refer to position with respect to the
center of the disk.

We represent the intruder with a Plummer model (Plummer
1911); it provides an analytic model of a softened potential,
and the degree of central concentration can be easily varied.
The gravitational potential of the Plummer model is given by

GM

o= - Pt a)n (1)
where G is the gravitational constant, M is the total mass of the
Plummer model, and a is a constant, often referred to as a
“softening ” length since it introduces a length scale into the
potential and prevents singular behavior at the origin. The
velocity impulse delivered to a particle at a position r from the
intruder is

Av(r) = — jw Vo(r, t)dt . 2)

Intruder
M

Z axis

F16. 1.—The geometrical configuration for the derivation of the impulse
approximation expressions. The z-axis passes through the disk’s center, and
the intruder moves along a line parallel to the z-axis, intersecting the plane of
the disk a distance b from its center. The intruder, of mass M, moves at
constant velocity V.

Substituting r(t) = (x — b)® + yp + (z + V)2, and taking the
gradient of the potential yields,

_ GM(x — b)
(Vo). = [(x — b + (z + Vt)* + y* + a*]??° (32)
GM,
(Ve), = - [(x —b)* + (z + Vi)> + y* + a®]¥*° (35)
V), = — GM(z + V) (30)

[(x = b+ (z+ V) + y* + a1
Upon performing the integrations of equation (2), we obtain
_2GM (x —b)x + yy

V [x=b2+y*+a?]|’

Rewriting this result in polar coordinates, (R, ¢) defined by
x = Rcos ¢,y = Rsin ¢, gives

2GM [(R—bcos )R + b sin ¢ 5
~ V |RP=2Rbcosp+b*+a2 | ©

We write the angular dependence in dimensionless form by
defining the dimensionless parameters, n = R/b and y = a/b
and have

Av(x, y, z) = 4)

Av(R, ¢) =

2GM n — cos ¢
Avg = —
UR % <n2 —2ncosd+ 1+ y2> - 6
2GM sin ¢
Av, = —
bo bV <r]2 —2ncosp+1+ y2> ’ (65)

2.2. Response to the Impulse

We here investigate how the velocity impulse affects the
orbits of stars in a given nonchanging potential. Our analysis is
somewhat similar to those given in Struck-Marcell (1990) and
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Donner et al. (1991), with the differences that 1) motion of the
host galaxy nucleus is considered; 2) a flat rotation curve in the
target galaxy is used, which yields simpler expressions; and 3)
the equations of motion are given here in terms of the velocity
perturbation and dimensionless collision parameters. First, we
modify equations (6) to express the velocity impulse relative to
the impulse delivered to the center of the potential. In this we
assume that the mass distribution that produces the halo
potential, although not explicitly modeled here, reacts to the
intruder’s passage by acquiring the velocity that would have
been delivered to a particle at the center of the disk. The equa-
tions of motion are then given in an inertial coordinate system
in which the center of the potential is at rest. If we neglect this
term, tidal stretching in the disk is reduced, and the morphol-
ogies produced by our approximate analytical model are less
consistent with the full n-body results given in § 4.

Subtracting the velocity impulse delivered to the origin of
coordinates from equations (6), we get

— ZGM/ n —cos ¢ cos ¢
AvR_’bV\nz—chos¢+1+y2+1+y2 ,  (79)
26M sin ¢ sin ¢

Av, = — B .
Vg 11% (,72 —2ncosp+1+92 1+ y2> (7b)

We obtain the equations of motion for the disk particles by
assuming they were in circular orbits prior to receiving the
impulse. After the interaction, a particle orbit is described as
executing epicyclic motion about a guiding center on a circular
orbit of radius R,. The value of R, is obtained by determining
the radius of the circular orbit that has the same angular
momentum as the particle after it received the impulse. The
specific angular momentum, [, of a particle after the impulse is
the sum of its initial angular momentum and the change in
angular momentum delivered by the intruder,

I, =Ryv.0 + RoAv,, (8)

where R, is the initial radius and v, , is the initial circular
speed. The angular momentum associated with the guiding
center’s circular orbitis R, v, ,, where v, , is the orbital speed of
the guiding center. Equating the two expressions for the

angular momentum and solving for R yields

A
R, = RO(‘M . —'42) . ©)

vC.g vay

At this point the analysis is significantly simplifed if we
assume that the disk galaxy particles move in a potential which
produces a rotation curve which is constant with radius. This is
a reasonable simplification since most disk galaxies are
observed to have constant rotation curves over all but the
inner portions of their disks. Under this assumption, the pre-
vious equation becomes

A
Rg=R0<1 +ﬁ> >

c

(10)

where v, is the constant circular speed in the disk. The radial
position of a particle in the epicycle approximation is

R =R, + Ag sin (kt +¥), (11
where k is the epicycle frequency (determined by the potential)
and Ai and ¥ are constants to be determined from initial
conditions. For a particle which was initially at coordinates
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(Rgs ¢o) we demand that R(t = 0) = R, and R(t = 0) = Auvyg,
note that x = ./2v./R for the flat rotation curve potential
under consideration, and find, to lowest order in velocities,

A
tan ¥ = — /22 (12)
Avg
Equivalently, we can write
sin ¥ = 13
\/— A /2Av¢ + Avg (3)
and
A
cosW = ——oR___ (14)
V2 A0} + Avg
The amplitude to first order is
A
Ay = R, 1471 (15)

V.

where |Af| = ,/2Av} + Avk. The expression for the radius

then becomes
A
R= R0[1 e B Lol

sin (xt + ‘I’)] (16)

fu
Note that the factors of ﬁ in the preceding equations are
unique to the potential under consideration.

We find the expression for the angular coordinate by
demanding that angular momentum be conserved along the
orbit after the impulse. Equating the angular momentum after
the collision with the angular momentum of the new guiding
center, we have

$R*=1uv,R, . 17)

Substituting the expression for R and keeping terms only to
first order, we obtain

24
=1’;—;[1 —R—O“sin (m+\y)]. (18)
This is integrated to give
t 2ARvY,
¢ = L 22 Y cos (xt + W) + constant . (19)
Ry KRo

The constant is obtained by setting ¢(0) =
impulse approximation), which yields

A t Av, Ap
vR %l <1— v)+| vlcos(xt+‘~l’).
v, Ro v v

We now define the following dimensionless parameters, which
will prove useful later,

¢o (as per the

¢ =do— (20)

c c

= i?/l:f > (21a)
e = 22 Cib)
T= znl;;t— : @1d)
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where R,,,, is the maximum radial extent of the disk. Defined
in this manner, y is a parameter describing the “strength” of
the interaction—jy/2y is the maximum possible value of the
velocity impulse in units of the (constant) circular speed in the
disk. For our approximations to be formally valid, y/2y must
be less than one. The term #,,,, is the maximum extent of the
disk in units of the impact parameter, and y’ is the ratio of the
intruder softening length to the maximum disk radius. The
term 7 measures time in units of the rotation period of the
outer edge of the disk.
We define dimensionless velocity impulses to be

Aug =

Avg ( o — €OS ¢ cos ¢o >

v X 17(2) - 2’10 Cos ¢0 +1 + y,znrznax 1+ V’anznax ’
(22a)

Au¢ =

éﬁ’i=_( sin ¢, __sin ¢ )

O X Mg — 2o €08 do + 1 + 920t 1+ 97000/’
(22b)

Ap
|Az| = 1A% = J2Au + AuZ, (22¢)

U X

and we write the equations of motion, in terms of the ratio of
radius to impact parameter #, as

Aii
n= no{l + xAuy + Xi/gl sin [Znﬁ %5 (1 —xAuy)r + ‘P]}
0

(23a)

¢ = po— xAug + 271%(1 — X Aug)t
0

+ x| Aii| cos [mﬁ ”"1"“ (1 — xAug)e + \le . (23b)
0

We note that these equations of motion depend only on the
initial coordinates, (19, @), and the three parameters ¥, #,..,
and y".

2.3. Surface Density

With the particle positions as functions of time and their
original coordinates, we can demand that the mass, dM, in a
small area be conserved, and we get an expression for the
surface density, X:

dM = 3(R, ¢, )RdRdp = Z(Ry, po)RodRoddy . (24)

The coordinates are related through the determinant of the
Jacobian matrix, J, by

dRd¢p =|J|dRyd¢, . (25)
The surface density is
- Ro y1-1
Z(R, ¢) = X(Ro, ¢o) 1" 17177 . (26)

Formally, the surface density goes to infinity at the zeros of the
Jacobian (see Donner et al. 1991). The points correspond to the
caustics described by Struck-Marcell (1990), Struck-Marcell &
Lotan (1990), and Donner et al. (1991)—regions where orbits
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overlap. Many of the morphologies presented in the next
section can be discussed in terms of these caustics and have
been done so by Struck-Marcell (1990). In real galaxies these
infinities are suppressed since 1) the density distribution is
made up of discrete stars, more than one of which cannot
occupy the same location, and 2) the stars are initially spread
in phase space by virtue of a nonzero velocity dispersion,
which will tend to suppress caustic formation. Hydrodynamic
pressure forces (operating in three dimensions) help prevent
infinite densities in the gaseous component of galaxies. Never-
theless, high densities are reached when gas interacts in these
regions, as we will show in § 4.

3. KINEMATIC RESPONSE OF THE DISK

After the collision, the transient disk morphology at any
given time is a function of the three parameters which represent
1) the impact parameter, 2) the “strength,” and 3) the central
concentration of the intruder. The best way to get a feel for
how the three parameters affect the collision is to plot a sample
of disk “stars ” for different values of the parameters.

3.1. A Survey of Forms

The form of the equations of motion in equations (23) allows
us to investigate grazing collisions by setting #,,,, < 1. More
central collisions can be modeled by considering larger values
of #,nax- The other two parameters which govern the kinematic
response of the disk are y, the ratio of the magnitude of the
velocity impulse to v, (the circular speed in the disk), and the
ratio y' = a/R,,,, describing the central concentration of the
Plummer model.

We plot in Figure 2 the response of stars to the velocity
impulse at a time equal to one-half a rotation period of the
outer edge of the disk. The disk’s rotation is counterclockwise.
We randomly chose initial positions for 10* “stars” and
plotted the positions according to our model at t = 0.5 [Radii,
1, were chosen randomly in the interval (0:7,,,,), Which pro-
duces a surface density that falls off as 1/4 and is useful for
illustrating particle kinematics.] In each column of Figure 2
the strength of the interaction, y, and the softening parameter,
y’, are held constant as the impact parameter is varied, taking
values of 2.0, 1.0, 0.5, and 0.25 in units of the disk maximum
radius (i.., . = 0.5, 1, 2, 4). The impact distance from the
center of the disk is indicated by the arrow at the bottom of
each panel. The impact point is directly to the right of the disk
center in the plots, and the scale is the same for all the panels of
Figure 2. The central concentration, y’, has the value 0.4 in
Figure 24, 0.2 in Figure 2b, and 0.8 in Figure 2c. Representative
values of y = 0.25, 0.50, and 0.75 were chosen for display. The
most extreme combination of parameters strictly invalidates
our assumptions in some regions of the disk but does not
generally affect the overall morphology of the system.

The dependence of morphology on the three parameters is
shown in Figure 2. More damage is done to the disks as the
strength, y, and the central concentration of the intruder
(smaller y’) increase. The nonpenetrating collisions (the first
two rows in Fig. 2, i.., #,, = 1, 0.5) produce two-armed spiral
features as exhibited in the n-body experiments of Toomre
(1978). In the cases where the impact point is one-quarter the
disk radius (row 4), rings form, although in the strongest inter-
action at this impact parameter (4,,, = 4, x = 0.75, ¥ = 0.2 in
Fig. 2b) an arm also reaches outward through the disk. At
intermediate impact parameters a one-armed spiral pattern is
more prevalent. With decreasing impact parameters a tran-
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FI1G. 2.—(a) Plots of disk particle positions as predicted by the analytic model. The time in each plot is one-half of a rotation period of the outer disk after impact.
The impact parameter, as indicated by the arrow, varies down each column. The impact point is located on a line extending perpendicularly from the right-hand axis,
passing through the disk center. The “strength ” (see text) decreases in each row. The intruder central concentration parameter y' is 0.4. (b) The same as (a), but with

' = 0.2.(c) The same as (a), but with y’ = 0.8.
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sition is seen that goes from two-armed spirals, through one-
armed spirals, to formation of a ring. The transition from spiral
to ring patterns appears to take place at impact parameters
somewhere near 0.25 of a disk radius, approximately in agree-
ment with the results of the n-body experiments of Lynds &
Toomre (1976) and especially Toomre (1978). This agreement
exists though Lynds & Toomre (1976) considered parabolic
collisions with a 2:1 mass ratio between the galaxies, a situ-
ation in which one might not expect the impulse approx-
imation to be applicable.

We can understand this transition qualitatively by consider-
ing the magnitude and directions of the imposed velocity
impulses. In all cases there is a velocity component that pro-
duces a motion along the line connecting the disk center and
the intruder. When the center of the intruder does not pen-
etrate the disk, this takes the form of a tidal stretching along
this line. Differential rotation shears this elongated form into a
two-armed spiral pattern. When the intruder center penetrates
the disk, however, on the impact side of the disk there is a
compression, rather than a stretching, toward the impact
point. The arm on that side of the disk disappears, being
replaced by an arc that can appear as an inner ring, leaving the
galaxy with one arm. As the impact point moves more toward
the center, axisymmetry is approached and arms are replaced
by rings.

As the strength parameter decreases, the galaxies become
less distorted and the morphologies tend toward more sym-
metric forms. Likewise, as the intruder becomes more
extended, nearly symmetric rings appear more often, as can be
seen in the strong collision halfway out in the disk with an
extended intruder (y = 0.75, y = 0.8 in Fig. 2¢), which forms a
ring.

In all cases a stronger collision with a more centrally con-
densed intruder produces sharper features. Off-center colli-
sions produce orbit crossings, which lead to caustic formation,
as pointed out by Struck-Marcell (1990) and Struck-Marcell &
Lotan (1990). Most, if not all, of the caustic structures dis-
cussed in Struck-Marcell (1990) are evident here. The morphol-
ogies produced by our method in the grazing encounters
(Mmax = 1, 0.5) correspond closely to those found numerically
by Byrd & Howard (1992) in a collision inclined by 40° to the
disk normal. Their Figure 3 exhibits the same near- and far-
side arm structure as seen in our model. Byrd & Howard (1992)
suggest that encounters at approximately 60° from the disk
normal are most common and are important for the formation
of grand design spirals. The ring and arm morphology evident
in Barnes’ (1992) n-body study (see his Fig. 3) also mimics
forms produced by our model.

3.2. Lifetimes of Features

Kinematic features typically appear to remain in the disk for
tens of rotation periods of the outer disk before phase mixing
washes out all obvious patterns (see § 1). With galactic disk
rotation periods on the order of a few 108 yr, the kinematic
features persist for 10° to 10'° yr. However, it might be
expected that dynamical processes would completely dominate
the disk evolution in a much shorter time. Sundelius et al
(1987) have shown in n-body experiments that tidal arms can
last some 3 x 10° yr for a typical galaxy. Byrd & Howard
(1992) conclude that these perturbations are important in
driving spiral structure. Presumably, processes such as swing
amplification (Toomre 1981) are contributing to the longevity
of the spiral structure in the dynamical simulations as pointed

out by Donner et al. (1991). Adams, Ruden, & Shu (1989) and
Shu et al. (1990) have shown that one-armed spiral waves are
formed in protostellar disks in which the center of mass does
not coincide with the center of the potential.

4. EXAMPLE: FORMATION AND EVOLUTION OF
SPIRAL FEATURES

As an example of how a self-gravitating disk behaves differ-
ently from the kinematic model, we examine one particular
model in detail. We compare the behavior predicted by our
analytic model response with that from a self-gravitating
n-body/SPH simulation. We chose as our model one in which
2GM/Vby, =02, y = 0.2, and 7,,,, = 2.2. If we scale param-
eters so that the disk galaxy resembles our own Galaxy, this
model would correspond to physical parameters of v, = 220
km s™%, b=8 kpc, R, =17.6 kpc, M =18 x 10'° Mg
(intruder mass), a = 3.5 kpc, and V = 580 km s~!. We note
that these parameters are very similar to those used in Gerber
et al. (1992), except the intruder mass is reduced by a factor of
approximately 10. In that previous paper, Gerber et al.
described the formation of a large-scale, incomplete ring of
high stellar and gas density which resembled observations of
the Arp 147 system. If we assume that the disk’s constant
circular speed is produced by a singular isothermal sphere
density distribution, the mass interior to the edge of the disk is
approximately 10 times the mass of the intruder. The rotation
period of the outer edge of the disk is about 500 Myr. In all
figures the disk rotation is again counterclockwise.

4.1. Kinematic Response

In the first panel of each row in Figure 3 we show a time
sequence of the disk response to the above perturbation as
given by our analytic model. By 7 = 0.10, a prominent arc of
enhanced density has formed. A careful inspection of particle
orbits in the vicinity of the arm reveals that particles that
initially lay on a common circle have crossed the orbits of
particles that were originally farther out in radius. This cross-
ing occurs in part because the epicycle frequency in the disk is
larger at smaller radii, so that stars near the center of the
potential begin moving outward while stars further out are still
falling in. This will have consequences when we consider gas
interactions in this region (see § 2.4). If these particles rep-
resented gas, they would not be able to stream freely past one
another and would interact strongly.

The arm continues to unwind in subsequent rows in Figure
3, and a low density region forms interior to the arc. At
7 = 0.30, there appear to be two arms on one side of the disk,
bracketing a region with very few stars. The prominent features
at t = 0.51 are a diffuse single arm which loops toward the
bottom of the figure and an inner arm with adjacent low-
density region in the upper left-hand quadrant.

We can gain insight into the process which forms the first
prominent arm by examining a small number of rings of par-
ticles as shown in Figure 4. Notice in particular the second ring
out at 7 = 0.05. The kink forms due to the differential angular
momentum impulse delivered to particles on opposite sides of
the horizontal axis. Particles on the side of the impact in the
direction of rotation (upper-right quadrant in the panels of Fig.
4) lose angular momentum as a result of the impulse. In this
approximation, they instantaneously find themselves moving
too slowly to maintain a circular orbit and begin to fall inward.
Particles on the other side of the impact point receive an
angular momentum boost. They respond by moving outward
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T=26 Star Particles T=26

Analytic Model Tau=.22 SPH Particles

T= Star Particles T=58

Analytic Mode! Tau=.30 SPH Particles

T=81 Star Particles T=81

F1G. 3.—Plots of particle positions for the example collision described in § 4. The first plot in each row represents the analytic model, the second plot shows the
SPH particles from the dynamic calculation, and the third plot shows the corresponding n-body disk particle positions.

in radius. All the particles at the same radius get an azimuthal
velocity impulse directed toward the impact point, so that
there is also a compression along the ring and the density
increases near the kink. The arm begins to grow at the locus of
these kinks, and by © = 0.10 orbits are crowding together and
can be seen to cross one another at 7 = 0.15.

4.2. Dynamic Response

To study the dynamic response of the disk to the collision,
we employed a three-dimensional n-body stellar dynamic and
SPH program developed by D. S. Balsara (see Balsara 1990;
Gerber 1993). All components—the disk stars and gas, the disk
galaxy halo, and the intruder stars—contribute to the gravita-
tional potential and are free to respond to the time-dependent
forces generated by that potential. The computations were per-
formed on the Cray 2 supercomputer at the National Center
for Supercomputing Applications at the University of Illinois
at Urbana-Champaign.

4.2.1. Numerical Method

In SPH, particles are used to model the gas continuum. The
particles carry with them information about their position,
thermal energy, and velocity. The density is obtained by
smoothing out the mass of neighboring particles using an
analytic smoothing function (see Lucy 1977; Gingold & Mon-
aghan 1977; Hernquist & Katz 1989; Balsara 1990). In the
simulations reported here, we use an ideal gas equation of state
and enforce isothermality by having each SPH particle retain
its initial temperature (see Gerber 1993; Gerber et al. 1992,
1994a).

The gravitational force is calculated by standard PM tech-
niques (see Hockney & Eastwood 1988). The gravitational
potential is calculated only at a restricted number of points on
a three-dimensional grid, and fast Fourier transform tech-
niques are used to solve Poisson’s equation on the grid and
thus determine the gravitational potential. Forces are found by
differencing the potential, and the force on an individual par-
ticle is determined by interpolation between grid points. In the
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T=103

Star Particles

T=103

Analytic Model Tau=.51 SPH Particles

T=136 Star Particles T=136

Fi6. 3—Continued

experiments described in this paper we use a cubic grid with 64
points along each side. Time integration is performed using a
time-centered leapfrog method (see Hockney & Eastwood
1988). More details of the combined code can be found in
Gerber et al. (1994a) and Balsara (1990), where tests of it are
presented.

4.2.2. Model Galaxies

The model disk galaxy consists of an exponential disk of gas
and stars surrounded by a massive, almost spherical halo of
gravitationally active particles. The elliptical galaxy consists of
a spherical distribution of stars only. The stellar disk with
surrounding halo was constructed in a manner similar to that
described in Barnes (1988). That is, the halo was allowed to
relax as an exponential disk potential was slowly imposed over
several halo crossing times. The halo was originally a spherical
King model (King 1966; Binney & Tremaine 1987) consisting
of 25,000 particles. The disk has a mass % that of the halo and
has 25,000 particles in rotation around the center. Toomre’s
stability parameter, Q, (Toomre 1964) was set fo 1.5 everywhere
in the disk. The three-dimensional density distribution, p, of
the disk is

Z(R) 2 Z

P(R, 2) 2 sech 0’
where H = ¢2(R)/nGZ(R), and Z(R) = (M.,,/2nR}) exp (— R/R,).
Here 62(R) is the velocity dispersion in the z direction. The
scale height, H, was set to a constant value throughout the
disk; M,,, is the total mass of a radially infinite exponential
disk with disk radial scale length, R,. The disk density distribu-
tion was cut off at 4.4 R,.

Approximately 22,000 SPH particles were distributed
throughout the disk to represent a gaseous medium of mass
1/10 that of the stellar disk. The SPH particles were placed in

27

circular orbits around the center of the disk with a small cor-
rection made to the circular speed to account for radial pres-
sure gradient support. The gas-free elliptical galaxy was
represented by a spherical King model. More details of the
initial models can be found in Gerber (1993) and Gerber et al.
(1992, 1994a).

The parameters of the computational model galaxies corre-
spond closely to those of the analytic model of § 4.1, but there
are some differences. The computer model’s disk rotation curve
rises from the center, reaches a peak value at a radius of about
2R,, and then slowly falls out to the edge of the disk, unlike the
constant circular velocity model assumed in the analytic treat-
ment. The chosen King model’s mass and radius yield a poten-
tial that approximates the potential form of the Plummer
model given previously. The dimensionless combination of
simulation constants 2GaMy;,./bV, .., V. ., has the approx-
imate value 0.2. Here My, is the King model mass, o is a
constant of order unity (1.24 in this case) that is used to scale
the King model potential to that of the corresponding
Plummer model, b is the distance of closest approach of the
two galaxies’ centers of mass, V,,, is the maximum relative
velocity of the centers of mass, and v, ,,, is the value of the
circular rotation speed averaged over the disk stars.

With the scaling given at the beginning of this section, the
disk galaxy has a mass of 1.75 x 10'' M, one exponential
disk scale length equals 4 kpc, and one time unit is 2 Myr. The
intruder galaxy has a mass of 1.75 x 10'® M. The disk has
a total mass of 5 x 10'° Mg (10% of which is gas) and the
halo mass is 1.25 x 10'! M. The vertical scale height in the
disk is 800 pc, somewhat larger than that seen in real spiral
galaxy disks but used here to avoid large gradients on length
scales beneath our numerical resolution. A disk 800 pc thick is
still quite thin compared to its diameter, which is truncated at
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F1G. 4—The same analytic model as shown in Fig. 3, but with a smaller number of particles plotted. The time sequence highlights how the differential angular
momentum impulse distorts initially circular rings and leads to the formation of the initial arm seen in Fig. 3.

35 kpc. The disk rotation velocity, averaged over the entire
disk for this model, is 211 km s ~*. The gas density in the plane
of the disk ranges from about 0.025 amu cm ™3 at the outer
edge to about 2 amu cm ~ 3 at the center of the disk. The ratio
of temperature to mean molecular weight, T/u, varies from
8000 K at the outer edge of the disk to 6 x 105 K at the center.
This temperature is required to provide enough gas pressure to
support the disk against gravity in the perpendicular direction.
Support due to magnetic fields and cosmic rays is not con-
sidered here. The model for the gas is not meant to accurately
model any one single component of the interstellar medium;
rather, it is to be thought of as representing a collisional com-
ponent in the disk that captures some of the physics relevant to
star formation studies, such as increases in density and the
presence of shocks.

4.2.3. Results and Comparison to Analytic Model

The distribution of gas and stellar particles are shown pro-
jected onto the x-y plane in the second and third panels,
respectively, of Figure 3. Only disk particles are shown, and
rotation is counterclockwise. Time is reckoned from the time of
close approach of the two galaxies’ centers of mass. The t given

in the analytic expression corresponds to 265 units of simula-
tion time, T, or 530 Myr.

Caution should be used when interpreting the SPH plots in
Figure 3. Each particle has (in principle) a different mass, so
regions of high particle density do not necessarily indicate a
correspondingly high gas density. Rather, it is better to loosely
think of regions of high SPH particle density as indicating a
high density relative to the initial density in the unperturbed
disk. On the other hand, the stars all have the same mass, and
an apparent high density does indicate a correspondingly high
stellar surface density.

Despite the differences between the analytic form for the disk
potential and that of the computer model, the behavior of the
disk in the latter is similar to that seen in the former. At T = 26
the arm-like feature seen at v = 0.10 shows up clearly in the
SPH particles and is visible as a broader density enhancement
in the stars. That arm continues to develop as it did in the
analytic model, and by T = 81 (z = 0.30) a counterarm has
formed that does not have an obvious analog in the analytic
model. Self-gravity and dissipation in the disk galaxy are likely
important in the formation of this feature. Either a small
density enhancement is being locally amplified in the disk, or
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the disk is responding to its own global nonaxisymmetric
potential, the symmetry having been disrupted by the passage
of the intruder. Probably both processes are at work here.

Kinematic features are still quite evident at T = 103
(r = 0.39). The arm in the lower left-hand quadrant continues
to be strongly visible in the SPH particles, even though stars
are no longer present in either the analytic or computer
models. The small spur interior to this arm that appears in the
analytic model is evident, particularly in the plot of stars. The
kinematic model gives reasonable results even as late as
T = 136 (t = 0.51). The inner arm that ends in the lower right-
hand quadrant and winds into the nucleus (see the plot of stars)
is predicted by the analytic model, as is the low stellar density
region just outside that arm at the lower right. The gap just to
the upper left of the nucleus likewise shows up in the kinematic
model, as does the general oval shape of the inner part of the
galaxy. A mismatch between the form and magnitude of the
analytic and computer models’ rotation curves becomes appar-
ent by the end of our computational run at T = 158 (r = 0.59);
the computer galaxy, which has a peak circular speed greater
than the analytic model’s circular speed, is running ahead of
the kinematic model, but the general features are still present.

The ultimate dynamic fate of the disk is uncertain. The dis-
turbances set up in the disk could initiate the self-amplification
and feedback loop as discussed by Toomre (1981) to produce
long-lived spiral features (see Byrd & Howard 1992). Even in
the absence of this mechanism, the kinematic response has a
memory of many tens of disk rotation periods as discussed
previously, which could provide the seeds for further growth of
disk instabilities.

4.2.4. Response of Gas versus Stars

The collisionless stars and dissipational gas respond differ-
ently following the interaction and may have differing spatial
distributions at any given time. The SPH particles, which were
initially on circular orbits, as were the stars in the analytic
treatment, exhibit thin features which resemble the analytic
model at early times after passage of the intruder. The stars
show these same features, but they are much broader, owing to
their initial velocity dispersion. When orbits which were ini-
tially circular cross, the gas is compressed, serving to further
enhance the kinematic features in the plots of the SPH particles
but also decoupling the gas from the stellar flow. Neighboring
gas particles become correlated in phase (position and velocity)
space after a momentum conserving inelastic collision, and,
because of this, features can remain in the gas after the corre-
sponding stellar patterns have disappeared. For this reason the
plots of disk stars more resemble our analytic model at later
times after the collision.

If we assume that elevated star formation rates correlate in
some manner with high SPH gas density and shock locations
(see, e.g., Mouschovias, Shu, & Woodward 1974), our com-
puter simulation shows that enhanced levels of star formation
can occur at sites where there is no underlying old stellar popu-
lation. This occurs when stellar kinematic features disappear
due to the stars’ ability to freely stream past one another, but
inelastic collisions force gas, from which stars form, to be left
behind. An observational consequence of this scenario is that
we would expect to find some features in interacting systems
that contain many young stars with no significant correspond-
ing background old stellar feature.
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In an upcoming paper (Gerber et al. 1994b) we show numeri-
cally that off-center collisions, similar to those considered here,
produce larger gas density enhancements and strong shocks in
the outer regions of the disk when compared to central colli-
sions. The mechanism that produces the high gas densities is
the interplay between the intersecting orbits discussed here.
When the collision is off center, the large rotational kinetic
energy of the disk is tapped to produce strong dissipation in
the gas. In collisions between equal-mass galaxies, orbits are
perturbed strongly and gas interacts violently, and a significant
decoupling between stars and gas occurs.

5. SUMMARY

We have derived a kinematic model for the collision of a disk
galaxy with a small, fast spherical galaxy whose impact trajec-
tory is parallel to the disk galaxy’s rotation axis and passes
through the disk at an arbitrary distance from its center. This
model shows that the morphological forms found in the
n-body experiments of Toomre (1978) and Byrd & Howard
(1992) can be understood in terms of stars executing epicyclic
oscillations about a circular guiding center in the plane of the
disk after receiving a velocity impulse from a second galaxy.
The resulting morphologies depend on the “strength” param-
eter (which includes the mass and relative velocity of the
intruder), the impact parameter, and the central concentration
of the intruder. Distant encounters produce transient two-
armed spiral features, collisions through the outer parts of the
disk make one-armed spirals, and central collisions produce
rings.

Comparison with a fully self-gravitating n-body/
gasdynamics computer simulation shows that the disk
response is largely kinematic at early times after passage of the
intruder. Gas, which was initially in circular orbits, shows a
strong density enhancement in the region where those circular
orbits cross. The stellar distribution is much broader owing to
its initial velocity dispersion and collisionless nature. At later
times (a significant fraction of a rotation period of the outer
edge of the disk), the self-gravity of the disk, which was some-
what prone to developing nonaxisymmetric structure in the
first place (see Gerber 1993; Gerber et al. 1994a), can become
important in amplifying density perturbations.

We expect that star formation is triggered in regions of
strong gas interactions, such as the regions of orbit crossings.
Gas streams collide inelastically in these regions, which pro-
duces large density enhancements and decouples gas from the
flow of stars. This separation of stellar and gaseous density
enhancements leads us to predict that active star formation can
occur in regions where there is currently no significant under-
lying old stellar population.
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